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Summary: We derive bounds for the mixture failure rate in the
multiplicative (proportional hazards) model. We explicitly show that
the corresponding proportionality in subpopulations does not result in
proportionality for a whole population. We analyze the shape of the mixture
failure rate in an environment with a stress change point and also discuss the
effect of shocks which change a mixing distribution.

1. Introduction
One can hardly �nd homogeneous populations in real life, although most

of the studies on the failure rate modelling deal with a homogeneous case.

Neglecting existing heterogeneity can lead to substantial errors in stochastic

analysis in reliability, survival and risk analysis and other disciplines.

Mixtures of distributions usually present an effective tool for modelling

heterogeneity. It is well known that mixtures of decreasing failure rate (DFR)

distributions are always characterized by the DFR (Barlow and Proschan,
MSC:
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1975). On the other hand, mixtures of increasing failure rate distributions

(IFR) can decrease at least in some intervals of time, which means that the

IFR class of distributions is not closed under the operation of mixing (Lynch,

1999).

A natural approach to the mixture modelling exploits a notion of a non-

negative, random, unobserved parameter (frailty) Z introduced by Vaupel et

al. (1979) for the Gamma-distributed Z. In fact, this approach results in

considering a random failure rate � (t; Z) : As the failure rate is a conditional

characteristic, the `ordinary' expectation E [� (t; Z)] with respect to Z does

not de�ne a mixture failure rate �m (t) and a proper conditioning should be

performed (Finkelstein, 2004).

The shape of the mixture failure rate is important in many applications

and has been studied intensively in the literature. For instance, Gurland and

Sethuraman (1994) considered some examples of mixtures that have strictly

decreasing failure rates, although each of the distributions that are being mixed

has a non-decreasing failure rate. In Block et al. (2003) it was shown that the

failure rate of a mixture of two distributions with linearly increasing failure

rates can exhibit a rather bizarre behaviour: there can be up to four (!) changes

in monotonicity. As mixture failure rates are often DFR, at least in the initial

interval of time [0; t0] ; t0 > 0, the corresponding burn-in procedures can

be implemented for the heterogeneous population of engineering components

(Block and Savits, 1997). Navarro and Hernandez (2004) have developed

interesting techniques for obtaining the bathtub shaped failure rates from

mixtures of two positive truncated normal distributions.

Considerable attention has been given to the study of asymptotic behaviour

of mixture failure rates as t ! 1. In Block et al. (1993) it was proved,
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that if the failure rate of each subpopulation converges to a constant and this

convergence is uniform, then the mixture failure rate converges to the failure

rate of the strongest subpopulation: the weakest sub-populations are dying

out �rst. In his recent paper Li (2005) generalizes these results. Note

that analytical restrictions in these �ndings, e.g. uniform convergence, are

rather stringent. Finkelstein and Esaulova (2006a) avoid these restrictions

and consider the problem from a different viewpoint exploiting the technique

of the Abelian-type theorems. The class of considered survival models is

rather general and contains proportional hazards and accelerative life models

as speci�c cases.

In the current paper we are mostly interested in simple bounds for the

mixture failure rate for the multiplicative model of mixing. The obtained

bounds can be very helpful in various applications, e.g. for mortality analysis

in heterogeneous populations (Thatcher, 1999). Speci�cally, we show that

when subpopulations obey the PH model with the multiplicative frailty Z and

the common proportionality factor k the resulting mixture failure rate has a

strict upper bound k�m (t), where �m (t) has a meaning of a mixture failure

rate in a heterogeneous population without a proportionality factor (k � 1):

Furthermore, this result presents another explicit justi�cation of the fact that the

proportional hazards (PH) model in each realization does not result in the PH

model for the corresponding mixture failure rates. An important applications

case of a step-stress changepoint in the proportional hazards framework is also

considered here and the corresponding bounds for the mixture failure rate are

derived. Another example deals with a special type of shock, which performs

a burn-in for heterogeneous populations.

A similar technique has been used in Finkelstein and Esaulova (2006b) for

ordering mixture failure rates with different mixing distributions, whereas in
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the current paper we are focused on obtaining bounds for �m (t) in different

settings.

2. Bounds for the mixture failure rate in a PH
model

Let T � 0 be a lifetime random variable with the Cdf

F (t)
�
F (t) � 1� F (t)

�
. Assume that F (t) is indexed by a random

variable Z:

P (T � t j Z = z) � P (T � t j z) = F (t; z)

and that the pdf f (t; z) exists. Then the corresponding failure rate � (t; z)

is f (t; z) =F (t; z). Let Z be interpreted as a non-negative random variable

with support in [0; 1) and the pdf � (z). Thus, a mixture Cdf is de�ned by

Fm (t) =

1Z
0

F (t; z)� (z) dz:

As the failure rate is a conditional characteristic, the mixture failure rate �m (t)

should be de�ned in the following way (see, e.g., Shaked and Spizzichino,

2001; Finkelstein and Esaulova, 2001 to name a few):

�m (t) =

Z 1

0

f (t; z)� (z) dzZ 1

0

F (t; z)� (z) dz

=

1Z
0

� (t; z)� (z j t) dz; (1)

where

� (z j t) � � (z) F (t; z)Z 1

0

F (t; z)� (z) dz

:

Consider now a speci�c multiplicative frailty model:

� (t; z) = z� (t) (2)



FAILURE RATE BOUNDS IN HETEROGENEOUS POPULATIONS 25

where � (t) is the baseline failure rate. It can be shown easily that due to the

multiplicative nature of the model, equation (1) can now be written as

�m (t) =
(L� (� (t)))

0

L� (� (t))
= � (log (L� (� (t))))0 ; (3)

where

L� (s) = E [exp f�sZg]
is the Laplace transform of the mixing distribution � (z) and � (t) =Z 0

0

� (u) du is a cumulative baseline failure rate, whereas notation (f (g (t)))0

means
d (f (g (t)))

d (g (t))
.

Formally combine model (2) with a PH model in the following way:

� (t; z; k) = zk� (t) � zk� (t) : (4)

Therefore, the baseline F (t) is indexed by the random variable Zk = kZ

with the pdf �k (z) = � (z = k). Equivalently, (4) can be interpreted as

a frailty model with a mixing random variable Z and the baseline failure

rate k� (t). These two simple equivalent interpretations will help us in what

follows. Assume for simplicity that E [Z] < 1. Substitution of equations
(2) and (4) into (1) gives

�m (t) = � (t)

1Z
0

z� (z j t) dz � � (t)E [Z j t] (5)

�mk (t) = k� (t)

1Z
0

z�k (z j t) dz � � (t)E [Zk j t] : (6)

As Zk = kZ, its pdf is

pk (k) =
1

k
�
� z
k

�
:

Theorem 1 Let the mixture failure rates for the multiplicative models (2)

and (4) be given by relations (5) and (6), respectively, where k > 1.
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Assume that the following quotient increases in z:

�k (z)

� (z)
=
�
� z
k

�
k� (z)

" (7)

Then

�mk (t) > �m (t) ; 8t 2 [0; 1): (8)

Proof Although inequality (8) seems rather trivial at �rst glance, it is valid

only for some speci�c cases of mixing (e.g., the multiplicative model). It is

clear that (8) is always true for suf�ciently small t, whereas for larger values

of time the ordering can be different for general mixing models. Denote:

��m (t) = �mk (t)� �m (t) :

Using de�nition (1), it can be seen that the sign of this difference is de�ned by

the sign of
1Z
0

zF (t; z)�k (z) dz

1Z
0

F (t; z)� (z) dz

�
1Z
0

zF (t; z)�k (z) dz

1Z
0

F (t; z)� (z) dz

=

1Z
0

1Z
0

F (t; u)F (t; s) [u�k(u)� (s)� s�k (u)� (s)] duds

=

1Z
0

u>s

1Z
0

F (t; u)F (t; s) [�k (u)� (s) (u� s) + �k (s)� (u) (s� u)] duds

=

1Z
0

u>s

1Z
0

F (t; u)F (t; s) (u� s) (�k (u)� (s)� �k (s)� (u)) duds.

(9)
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Therefore, the suf�cient condition for inequality (8) is condition (7). It is easy

to verify that this condition is satis�ed, e.g. for the Gamma and the Weibull

densities which are often used for mixing.

Example 1 Consider the frailty model (3), where Z has a gamma

distribution:

� (z) =
�a

� (�)
z��1 exp f��zg ; � > 0; � > 0:

As was mentioned, condition (7) is satis�ed in this case and therefore

inequality (8) takes place. But this can also be shown by direct integration.

Substituting into relation (1):

�m (t) =

� (t)

Z 1

0

exp f�z� (t)g z� (z) dzZ 1

0

exp f�z� (t)g� (z) dz
:

Computation of integrals results in

�m (t) =
�� (t)

� + �(t)
: (11)

Equation (11) can now be written in terms of E [Z] and V ar (Z):

�m (t) = � (t)
E2 [Z]

E [Z] + V ar (Z) � (t)
; (12)

which for the speci�c case E [Z] = 1 gives the result of Vaupel et al. (1979)

which is widely used in demography :

�m (t) =
� (t)

1 + V ar (Z) � (t)
: (13)

On the other hand, considering model (4) for k > 1 results in

�mk (t) = � (t)
E2 [Zk]

E [Zk] + V ar (Zk) � (t)

= � (t)
k2E2 [Z]

kE [Z] + k2V ar (Z) � (t)
> �m (t) ;

which is a direct proof of inequality (8) for this speci�c case.

Now we shall obtain an upper bound for �mk (t).
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Theorem 2 Let the mixture failure rates for the multiplicative models (3)

and (4) be given by relations (5) and (6), respectively, where k > 1.

Then

�mk (t) < k�m (t) ; 8t 2 (0; 1) : (14)

Proof Consider the difference �mk (t) � k�m (t) similar to (9), but in a
slightly different way: �mk (t) will be equivalently de�ned by the baseline

failure rate k� (t) and the mixing variable Z (in (9) it was de�ned by the

baseline � (t) and the mixing variable kZ). This means that

�mk (t)� k�m (t) = k� (t)
� bE [Z j t]� E [Z j t]� ; (15)

where conditioning in bE [Z j t] is different from the one in E [Z j t] in the
described sense. Denote:

F k (t; z) = exp f�zk� (t)g :

`Symmetrically' to (9), sign[�mk (t)� k�m (t)] is de�ned by

sign
1Z
0

1Z
0

� (u)� (s) (u� s)
�
F k (t; u)F (t; s)� F (t; u)F k (t; s)

�
duds;

which is negative for all t > 0 as
F k (t; z)

F (t; z)
= exp f� (k � 1) z� (t)g

is decreasing in z.�
It is worth noting that we do not need an additional condition for this bound

as in the case of Theorem 1. Also it is clear that �mk (0) = k�m (0). As it

was already mentioned, model (4) de�nes a combination of a PH and a frailty

model. When Z = 1, it is an `ordinary' PH model. In the presence of a

random Z, as follows from (14), the observed failure rate �mk (t) cannot

be obtained as k�m (t) due to the nature of mixing. Therefore, this

theorem gives another explicit justi�cation of the fact that the PH model in
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each realization does not result in the PH model for the corresponding mixture

failure rates.

Example 1 can be continued to illustrate inequality (14):

�mk (t) = � (t)
k2E2 [Z]

kE [Z] + k2V ar (Z) � (t)

< � (t)
kE2 [Z]

E [Z] + V ar (Z) � (t)
= k�m (t) :

Example 2: Stable frailty distributions and proportionality

It follows from Hougaard (2000), that the Laplace transform of a stable

distribution is given by

L (s) = exp

�
��s

�

�

�
;

where � is a positive parameter and � 2 (0; 1] for positive stable

distributions. Note that the value � = 1 corresponds to the degenerate frailty

distribution and therefore is not considered. Applying equation (3) to initial

model (2) results in

�m (t) = �� (t) (� (t))
��1

:

On the other hand, applying equation (3) to model (4) gives

�mk (t) = k
��� (t) (� (t))

��1
= k��m (t) :

Therefore, we observe proportionality in this setting, but with the changing

coef�cient of proportionality (from k to k� , respectively).

It is clear that this speci�c result does not contradict our theorems, as

it follows directly from these equations that for positive stable distributions

(� 2 (0; 1)) and k > 1:

�m (t) < �mk (t) < k�m (t) ; 8 t 2 (0:1) ;

which are, in fact, inequalities (8) and (14).
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3. Impact of environment on mixing distributions
Changes in time in mixing distributions can occur due to various reasons. In

this section we shall consider two speci�c cases.

3.1 Change in environment (stress)
Assume that there are two possible environments (stresses): " (t) and "s (t) �

the baseline and a more severe one, respectively. The baseline environment for

our heterogeneous population corresponds to the observed failure rate �m (t)

and a more severe one to �mk (t) ; k > 1. As previously, assume also that

the PH model holds for each subpopulation (for each �xed z). Consider a

piece-wise constant step stress with a single change point at t1:

" (t1) =

�
"; 0 � t < t1
"k t � t1

(16)

where the stresses " and "k correspond to the failure rates z� (t) and

zk� (t), respectively (k > 1; z � 0). In accordance with a `memory-less
property' of the PH model, the stress (16) results in the following failure rate:

� (t; t1; z; k) =

�
z� (t) ; 0 � t < t1
kz� (t) t � t1

(17)

for each subpopulation.

Denote the resulting mixture failure rate in this case as

�m (t; t1) =

�
�m (t) ; 0 � t < t1e�mk (t) t � t1

(18)

where similar to the previous section, where �mk (0) = k�m (0), the

analogous equation holds for the change point at t1:e�mk (t1) = k�m (t1) : (19)

Relation (19) means that the model with a step stress is proportional for the

mixture failure rates only at t1.
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We want to prove the following inequality:

�mk (t) < e�mk (t) ; 8 t 2 [t1; 1) (20)

In accordance with (18), consider two initial (for the interval [t1; 1)) mixing
random variables: Z1 = Z j T1 > t1, where T1 is de�ned by the

baseline failure rate k� (t) (see interpretation of relations (2) and (4)) andeZ1 = Z j eT1 > t1; where eT1 is de�ned by the baseline failure rate � (t). As
follows from de�nition (1), the ratio of the corresponding densitiese� (z; t1)

� (z; t1)
= exp f(k � 1) z� (t1)g

is increasing in z, therefore condition (7) holds and inequality (20) follows

immediately from (9) with obvious alterations caused by the change in the left

end point of an interval from 0 to t1.

Example 3 We illustrate inequality (20) by an example from Vaupel and

Yashin (1985). Consider a discrete mixture of two subpopulations of humans

with the Gompertz baseline failure rate. Thus, an entire cohort consists of a

frail and a robust cohort with mortality rates �j (t) and �r (t), respectively.

Assume that the health progress reduces mortality rate proportionally to e�R (t)
and e�r (t), respectively:

�R (t) = ke�R (t) ; �r (t) = ke�r (t) ; k > 1:

It follows from (8) that the corresponding mixture mortality rates for the two

regimes are ordered as

e�m (t) < �m (t) ; 8 t 2 [0; 1):
Now, in accordance with the setting of this section, assume that the health

progress reduces mortality rates in subpopulations only at younger ages

([0; t1)) and leaves them unchanged in (t1; 1). Then, as follows from (20):

�m (t) < e�m (t) ; 8 t 2 [t1; 1):
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Thus, in [0; t1) mixture mortality rate is evidently reduced, but strangely

enough this early life reduction increases mixture mortality rate in [t1; 1)
compared with a `no reduction' case. �Every individual's life chances are

improved at younger ages and are as good as ever at later ages, but observed

(mixture) cohort mortality makes it look as if pediatricians are making progress

whereas gerontologists are losing ground� (Vaupel and Yashin (1985). These

authors have used simulations to illustrate the phenomenon, whereas we have

proved it analytically.

3.2 Shocks in heterogeneous populations
Consider now a general mixing model (1) and assume that at time t = t1 an

instantaneous shock had occurred, which affects the whole population: with

the corresponding complementary probabilities it either kills an individual, or

`leaves him unchanged'. Without losing generality, let t1 = 0, otherwise a

new initial mixing variable Z j t1 should be de�ned and the corresponding
procedure can easily be adjusted to this case. It is natural to suppose that the

more frail (with larger failure rate) individuals are, the more susceptible they

are to dying.

This setting can be de�ned probabilistically in the following way: Let

�1 (z) denote a frailty distribution of a random variable Z1 after a shock

and let �ms (t) be the corresponding observed (mixture) failure rate after it.

Assume that

�1 (z) =
g (z)� (z)Z b

�

g (z)� (z) dz

(21)

where g (z) is a decreasing function and therefore �1 (z) =� (z) is decreasing.

It means that a shock performs a kind of a burn-in operation (Block et al., 1993)

and Z and Z1 are ordered in the sense of the likelihood ratio (Ross, 1996;
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Shaked and Shanthikumar, 1993):

Z �LR Z1 (22)

Now we are able to formulate the following result:

Theorem 3 Let relation (21), de�ning a mixing density after a shock at

t = 0, where g (z) is a decreasing function, hold.

Assume that

� (t; z1) < � (t; z2) ; z1 < z2; 8 z1; z2 2 [0; 1] ; t � 0: (23)

Then

�ms (t) < �m (t) ; 8 t 2 [0; 1): (24)

Proof Inequality (23) is a natural ordering in the family of failure rates

� (t; z) ; z 2 [0; 1) and trivially holds for the speci�c model (2).

Conducting all steps as when obtaining relation (9), �nally results in

sign [�ms (t)� �m (t)]

= sign
bZ
�
u>s

bZ
�

F (t; u)F (t; s) (� (t; u)� � (t; s))

� (�1 (u)� (s)� �1 (s)� (u)) duds,

which is negative due to de�nition (21) and assumptions of this theorem.�
At t = 0, for instance

�m (0)� �ms (0) =
1Z
0

� (0; z) (� (z)� �1 (z)) dz:

In accordance with inequality (24), the curve �ms (t) lies beneath the curve

�m (t) for t � 0. This fact seems intuitively evident, but, in fact, it is valid
only due to the rather stringent conditions of this theorem. It can be shown, for

instance, that the replacement of condition (22) by a weaker one of stochastic

dominance, Z �st Z1; will not guarantee ordering (24) for all t.
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4. Concluding remarks
We derive bounds for the mixture failure rate of heterogeneous populations and

show analytically that a PH model, which holds for subpopulations, is violated

for the observed (mixture) failure rate. In Example 2 we consider the case

of positive stable mixing distributions, when proportionality holds but with a

different coef�cient.

Shocks with described stochastic properties `push down' the initial mixture

failure rate (ordering (24)). It will be interesting to consider other models for

a shock's impact on a heterogeneous population, e.g. when the function g (z)

in (21) is increasing or nonmonotone.

Changes in environment can lead to surprising effects in mixture failure rate

dynamics. Example 3 shows this phenomenon in the demographic context.
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